
Take Down MacOS Bluetooth with 

Zero-click RCE 

Author: Jianjun Dai(@jioundai) of 360 Alpha Lab 

Zero-click vulnerabilities have become more and more popular in recent 

years, and the bounty for full exploit chains has also surged. In 2019, Apple 

Security Bounty even raised the reward up to one million US dollars for zero-

click kernel code execution with persistence and kernel PAC bypass. 

In the meanwhile, high prices also mean greater threat the vulnerability may 

pose and more difficulty to discover. Anyone who has done researches on 

remote zero-click vulnerabilities knows that it is very tough to get a stable 

zero-click exploitation as it lacks flexible interface for remote calls and has 

many unstable factors. 

In December 2019, I submitted 5 macOS Bluetooth vulnerabilities to Apple, 

together with a complete report of zero-click bugs that can remotely take 

down macOS Bluetooth.

 



 

The odd thing is that in the March security update, the vulnerability is 

numbered CVE-2019-8853 (why it’s 2019?), and macOS Catalina 10.15.3 

was left out of the affected versions. 

In this article, I will detail two vulnerabilities used in the exploit chain, CVE-

2020-3847 and CVE-2020-3848, and how did I get the code execution. 

However, I will not release the exploit code itself. If you are interested, you 

can try to reproduce the exploit yourself. 

0x0 MacOS Bluetooth 

0x01 Bluetooth Architecture 

 

In macOS, the data on the layer L2CAP (Logical Link Control and Adaptation 

Protocol) is processed by the kernel driver IOBluetoothFamily (the 

vulnerability I found in the IOBluetoothFamily was in Apple's January 

acknowledgement). The data on L2CAP, such as SDP, BNEP, and so on, are 

handled by the user mode process bluetoothd, and the bluetoothd process 

runs with root privilege. 

0x02 SDP Frame 

The two vulnerabilities involved in this exploit are both in the processing code 

of SDP (Service Discovery Protocol) data frames. This section briefly 

introduces the SDP frame, as follows: 

 



The first byte PDU field indicates the SDP request or response message. 

PDU = 2/4/6 indicates SDP Request, and PDU = 0/1/3/5 indicates SDP 

Response. 

The Parameter Length field indicates the length of the payload. You can use 

wireshark to capture and analyze the packets as follows: 

 

0x1 Vulnerability Details 

0x11 CVE-2020-3847 

CVE-2020-3847 can cause remote out-of-bounds read, and it exits in the 

(PDU=4) of function [SDPServerConnection 

handleServiceAttributeRequest:length:transactionID:]. To trigger the 

vulnerability, two SDP requets in different states should be sent. 

The 1st request: 



 

Line 136 cont_state reads a byte from the transmitted data packet (pdata). 

The first time we make cont_state = 0, so line 143 is_cont_pkt = false. 

Then move onto the following lines: 

 

Line 270, rem_len is an indirectly controllable variable. According to the data 

in the request packet, query the attributes in the SDP database, Rem_len 

indicates the length of the query, let’s assumed it to be 0x16. max_list_len is 

2-byte data read from the data packet, and it is also a directly controllable 

variable. We can make rem_len> max_list_len so that the code goes to the 

else branch. 

Line 280, because is_cont_pkt = false, the final code is executed to line 284. 

rem_len will assign service_attr_result_len to a member variable of the object 

pSDPServerConn, and pSDPServerConn-> ServiceAttributeResults = malloc 

(0x16). The pSDPServerConn object is an object generated when an SDP 



socket connection is established. It is destroyed only when the connection is 

disconnected. 

The 2nd SDP Request: 

Send a second SDP request message. Make cont_state = 4, so that 

is_cont_pkt = true. 

Line 153, cont_offset is an unsigned int variable that reads 4 bytes of data 

from the data packet and is also directly controllable. 

Line 154, we make cont_offset> 0x16. Assuming cont_offset = 0x18, an 

integer overflow occurs and rem_len = uint32_t (-2). 

Line 270, rem_len> max_list_len, to enter the else branch. 

Line 278, v74 = max_list_len, is also a directly controllable variable, of course, 

the value must be smaller than MTU (672). 

280 lines, because is_cont_pkt = true, the following code will not be executed. 

The code runs to the following lines: 

 

Line 324, because cont_offset is controllable, it can cause an out-of-bounds 

read on pSDPServerConn-> ServiceAttributeResults, and the length v74 is 

also controllable. And p_rsp_buf will eventually be sent back to the attacker, 

resulting in information leakage. 

0x12 CVE-2020-3848 

CVE-2020-3848 can cause remote memory corruption. It exists in the function 

[SDPClientConnection 

handleServiceSearchAttributeResponse:length:transactionID:]. The code is as 

below: 



 

Line 105, v44 is a byte of data read from the data packet, assuming v44 = 

0xff. 

Line 116, then v43 = true. 

Then look at the following code snippet: 

 

Line 149, * ((unsigned __int16 *) pSDPClientConn + 35)-17 is 

pSDPClientConn-> req_buf, and req_buf = malloc (0x20) points to a fixed 

length of memory. Because v44 = 0xff, memcpy caused a heap overflow, and 

the overflowed data was completely controllable. 

0x2 Unique Features Make Perfect 

Zero-click 

When I discovered the above memory corruption vulnerability, I was actually 

very frustrated because of the code in the function [SDPClientConnection 

handleServiceSearchAttributeResponse:length:transactionID: 



 

This code is to check whether pSDPClientConn has sent the corresponding 

Request message. If no request has been sent before, it is considered that an 

abnormal response message is received and the function is exited, so as not 

to trigger the above memory corruption vulnerability. 

If you have researched the Bluetooth SDP protocol, you should know how 

great this check is. Many Bluetooth protocols don't do this. 

Because of this code, I once considered giving up on this vulnerability. 

Because to trigger the vulnerability, a Bluetooth pairing connection needs to 

be established so that macOS can actively send SDP requests. On the 

surface, it is one-click, but its influence is greatly reduced. This is not the 

result I wanted. 

The experience I have accumulated while researching Android Bluetooth 

vulnerabilities has helped me. I know that many manufacturers will design 

unique features on the Bluetooth connection of their own products to achieve 

some special functions. 

So I decided to analyze it again in depth. Finally, hard work pays off. I found a 

very interesting feature in the [SDPServerConnection 

handleServiceSearchAttributeRequest: length: transactionID:] function: 

 



 

Line 173, max_list_len is 2-byte data read from the SDP request message; 

Line 212, if max_list_len == 0xFD2D, the performSDPQuery function will be 

called. We can guess from the function name that it will send an SDP request. 

My analysis confirmed my previous guess. 

In this way, I found a way to trigger a memory corruption vulnerability with 

zero click. I was thrilled to find this feature! 

0x3 The Exploitation 

A more conventional idea to a heap overflow exploitation is to heap feng shui. 

But when I wrote the exploitation, I encountered the following two difficulties: 

 The SDP channel could not find a suitable interface to generate a large 

number of new objects and reside in memory. 

 Other conventional channels cannot achieve zero-click, such as BNEP, 

GATT and other protocols. When the connection is established, a popup 

prompts 



 

Translation of the popup window: 

The connection is from: 4 

If you want to permit the connection, please press “connect”. 

Refuse please press “cancel”. 

So I can only complete all the exploits through the SDP channel. 

After testing and research, it is found that the same client can establish 30 

SDP socket connections with macOS Bluetooth at the same time, so that 30 

SDPServerConnection objects can be created. 

 

And other objects will be created in the SDPServerConnection object. In the 

end, I found that I can get the following relationship diagram: 



 

Thus, 90 available objects can be laid out in memory, so that a simple heap 

feng shui can be completed. As for the macOS heap management 

mechanism, it will not be introduced here. 

 

The complete exploit idea is as follows: 

1. Create 30 SDP socket connections to complete the simple heap feng shui. 

2. Use 30 SDPServerConn for information leakage, leak the object 

SDPClientConn, and obtain the address of SDPClientConn-> req_buf, and 

the address of SDPClientConn-> result_buf (for the memory layout later, 

such as fake_obj etc.) 



3. Leak object SDPServerConn, find SDPServerConn objects that meet the 

following conditions: addr (SDPServerConn-> ServiceAttributeResults) 

<addr (SDPClientConn-> req_buf); keep a record of: offset = addr 

(SDPClientConn-> req_buf) --addr (SDPServerConn-> 

ServiceAttributeResults); sock [i]; 

4. Use sock [i] and offset to directly leak the data (<255) after 

SDPClientCon-> req_buf, and verify whether it is one of the following three 

objects: SDPServerConn L2CAPChannel L2CAPChannelExpansion 

5. If a known object is successfully laid out after req_buf, a memory 

corruption vulnerability is triggered, covering obj-> isa, and use Objective-

c's exploit techniques to complete code execution. 

Otherwise, exit and return to step 1. 

During the entire process of triggering and exploiting the vulnerability, the 

attacker's device must act as both a client and a server, as shown in the 

following figure: 

 

0x4 Summary 

After researching the Bluetooth protocol of Apple devices, it is known that 

most protocols cannot complete zero-click Bluetooth socket connection. This 

article mainly introduces how to find the SDP protocol vulnerabilities, explore 

the possibility of zero-click, and finally complete the exploitation in such a 

narrow gap. The article analyzes the vulnerability in detail, introduces some 

interesting features in the design of the macOS Bluetooth, and take 

advantage of them to complete the interaction-less vulnerability exploitation, 

and also shares ideas behind it. 



Timeline 

 December 1, 2019, submitted 5 vulnerabilities and an exploit report to 

Apple 

 December 4, 2019, Apple officially confirmed the vulnerabilities 

 January 29, 2020, Apple Security Update released 4 patches 

 March 25, 2020, Apple Security Update released the fifth patch 

 


